您当前的位置: 技术标准 > 技术动态

解析生物识别发展十大关键技术

时间:2011-03-07 00:00:00  来源:互联网  编辑:互联网

  4生物信号的定位与分割技术

  经过处理后的掌纹纹路更清晰了

  从生物特征获取装置采集得到的原始信号一般不仅包括生物特征本身,还包括背景信息,例如原始的虹膜图像中包括虹膜、瞳孔、巩膜、眼皮和睫毛等多个区域,真正能有效鉴别人们身份的图像内容也就在虹膜区域。所以必须从原始信号中分割出感兴趣内容进行特征提取。定位和分割算法一般都是基于生物特征在图像结构和信号分布方面的先验常识。例如人脸检测就是要从图像中找到并定位人脸区域,一直是计算机视觉领域的研究热点。

  2001年美国的Viola和Jones提出了用易于计算的Harr小波特征来描述人脸模式,用AdaBoost来训练人脸检测分类器,取得了人脸检测领域的突破性进展,实现了实时检测视频中的人脸图像,而且准确率也非常高。这个方法对计算机视觉和生物识别领域的影响都很大,现在商业化的人脸识别系统基本上都是使用这种人脸检测方法或者其变种。而且这种通过机器学习训练弱分类器的方法也被推广到了一般视觉对象的检测和识别上。指纹的分割算法一般是基于指纹区域和背景区域的图像块灰度方差的差异特性;虹膜的定位主要利用瞳孔/虹膜/巩膜存在较大的灰度跳变并且成圆形的边缘分布结构特征;掌纹的定位一般是基于手指之间的参考点来构建参考坐标系。

  5生物特征信号增强技术

  得到了分割后的特征区域后,有的生物特征识别方法需要在特征提取前对感兴趣区域进行增强,主要目的包括去噪和凸显特征内容。例如人脸和虹膜图像一般用直方图均衡化的方法增强图像信息的对比度;指纹一般用频域的方法得到脊线分布的频率和方向特征后进行纹路增强;对于比较模糊的生物特征信号,可以考虑使用超分辨率的方法或者逆向滤波的方法进行增强。

  6生物特征信号的校准技术

  为了克服不同时刻采集的生物特征信号之间的平移、尺度和旋转变换,需要将参与比对的两个生物特征进行对齐。有的生物特征校准在特征提取之前完成,例如常用主动形状模型(ActiveShapeModel)和主动表观模型(ActiveAppearanceModel)进行人脸对齐;有的生物特征校准的过程就是特征匹配的过程。生物特征信号的校准结果对于识别精度的影响很大,所以也有学者认为生物特征识别最重要的问题是校准技术。

  7生物特征表达与抽取技术

  对于生物特征识别,不管是外行还是内行,人们首先想到的问题就是:机器是用什么特征进行身份识别的?什么是生物特征信号中凸现个性化差异的本质特征?这就是生物识别的基本的、原理性的问题。对于这个问题在个别的生物特征识别领域得到了共识,例如指纹识别,大家都公认细节点(包括末梢点和分叉点)是描述指纹特征的最佳表达方式,所以国际上就有统一的基于细节点信息的指纹特征模板交换标准,给不同厂商的指纹识别系统的兼容性和数据交换带来了便利。但是在其他生物识别领域,例如人脸、虹膜、掌纹等领域研究人员还在不断探索最佳的特征表达模型。虽然这些领域的特征表达方法的种类繁多,部分算法也已经取得了很好的识别性能,但是人脸识别、虹膜识别、掌纹识别的根本问题——“什么是人脸、虹膜或掌纹图像的本质特征及其有效表达?”一直没有得到权威和普遍认同的回答。

  这是因为每个人脸、虹膜和掌纹图像的特征表达方法都是基于某种信号处理方法或者某个计算机视觉或者某个模式识别的理论,“公说公有理,婆说婆有理”,大家对于这些图像的本质特征表达还没有进行深入的研究。现在生物特征表达领域的流行趋势是把各种经典的或者新提出的图像分析方法依次去试,有点撞大运的感觉,产生这种现象的根源是大家没有基础理论的引导,不知道向哪个方向努力好。由于各种方法各自为“政”,造成生物特征模板的数据交换格式难以统一和标准化。例如人脸、虹膜和掌纹的数据交换标准只能基于图像,这是因为大家找不到一个统一的、权威的图像特征表达方法。

  相对于基于特征的数据交换标准,基于图像的交换标准在计算和存储资源的占用、传输速率等多方面都处于下风。例如在电子护照应用中,统一格式的生物数据都存放在非接触IC芯片中,在识别前需要通过无线读卡器从护照IC中读出生物数据,这时基于特征的方法比基于图像的方法快100倍,而且基于图像的方法还要多一个特征提取的步骤才能得到用户护照中的生物特征。所以不管是对于研究还是应用,生物特征信号本质特征的尽快确定都是最重要的。

  通过模拟这些生物体神经细胞对外界视觉刺激的信息编码规则,计算机视觉研究人员提出了OrdinalMeasures(定序测量特征)来表达图像内容。中科院自动化所生物识别与安全技术研究中心通过拓展原始的定序测量特征的内涵,提出了多极子滤波器的概念,建立了虹膜图像特征表达的一般框架,证明了虹膜图像区域之间的排序测度特征等价于虹膜物理表面不同位置反光率之间的大小顺序关系,是独立于光照、对比度等外界因素的虹膜图像的本质特征。

  在这个框架下,虹膜特征抽取甚至可以简化成简单的加减运算,成功地解决了虹膜识别从PC向嵌入式平台移植的计算复杂性难题。通过定序测量特征,研究中心还建立了掌纹图像特征表达的一般框架,统一了该领域识别性能最好的三种掌纹识别方法。并针对低分辨率掌纹图像上主线和皱纹线灰度模式特点,提出了新颖的十字架形微分滤波器来抽取掌纹图像中的定序测量特征。实验结果表明新的掌纹识别方法不仅识别精度远高于主流方法,并且计算速度比最好方法快一倍。

上一页 1 2 3 下一页
来顶一下
返回首页
返回首页


上一篇: 浅析远程门禁管理控制系统的ID证件管理 下一篇:门禁识别系统智能卡可扩展性成未来趋势

相关文章
    无相关信息


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

推荐资讯
微波红外探测器
微波红外探测器
对讲门铃可视通化电子可视门铃
对讲门铃可视通化电子
楼宇防盗对讲,智能门禁系统
楼宇防盗对讲,智能门
校园安全管理一体机 孩子安全有保障
校园安全管理一体机 孩
热门资讯
最新资讯
XML 地图 | Sitemap 地图